Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox Signaling Mechanisms in Nervous System Development.

Identifieur interne : 000224 ( Main/Exploration ); précédent : 000223; suivant : 000225

Redox Signaling Mechanisms in Nervous System Development.

Auteurs : Mauricio Olguín-Albuerne [Mexique] ; Julio Morán [Mexique]

Source :

RBID : pubmed:28817955

Descripteurs français

English descriptors

Abstract

SIGNIFICANCE

Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance.

CRITICAL ISSUES

The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes.

FUTURE DIRECTIONS

The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.


DOI: 10.1089/ars.2017.7284
PubMed: 28817955


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox Signaling Mechanisms in Nervous System Development.</title>
<author>
<name sortKey="Olguin Albuerne, Mauricio" sort="Olguin Albuerne, Mauricio" uniqKey="Olguin Albuerne M" first="Mauricio" last="Olguín-Albuerne">Mauricio Olguín-Albuerne</name>
<affiliation wicri:level="1">
<nlm:affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México</wicri:regionArea>
<wicri:noRegion>Ciudad de México</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moran, Julio" sort="Moran, Julio" uniqKey="Moran J" first="Julio" last="Morán">Julio Morán</name>
<affiliation wicri:level="1">
<nlm:affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México</wicri:regionArea>
<wicri:noRegion>Ciudad de México</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28817955</idno>
<idno type="pmid">28817955</idno>
<idno type="doi">10.1089/ars.2017.7284</idno>
<idno type="wicri:Area/Main/Corpus">000314</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000314</idno>
<idno type="wicri:Area/Main/Curation">000314</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000314</idno>
<idno type="wicri:Area/Main/Exploration">000314</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox Signaling Mechanisms in Nervous System Development.</title>
<author>
<name sortKey="Olguin Albuerne, Mauricio" sort="Olguin Albuerne, Mauricio" uniqKey="Olguin Albuerne M" first="Mauricio" last="Olguín-Albuerne">Mauricio Olguín-Albuerne</name>
<affiliation wicri:level="1">
<nlm:affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México</wicri:regionArea>
<wicri:noRegion>Ciudad de México</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moran, Julio" sort="Moran, Julio" uniqKey="Moran J" first="Julio" last="Morán">Julio Morán</name>
<affiliation wicri:level="1">
<nlm:affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Mexique</country>
<wicri:regionArea>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México</wicri:regionArea>
<wicri:noRegion>Ciudad de México</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Nervous System (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Système nerveux (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
<term>Nervous System</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Mitochondries</term>
<term>Système nerveux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>SIGNIFICANCE</b>
</p>
<p>Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CRITICAL ISSUES</b>
</p>
<p>The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>FUTURE DIRECTIONS</b>
</p>
<p>The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28817955</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox Signaling Mechanisms in Nervous System Development.</ArticleTitle>
<Pagination>
<MedlinePgn>1603-1625</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2017.7284</ELocationID>
<Abstract>
<AbstractText Label="SIGNIFICANCE">Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance.</AbstractText>
<AbstractText Label="CRITICAL ISSUES">The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes.</AbstractText>
<AbstractText Label="FUTURE DIRECTIONS">The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Olguín-Albuerne</LastName>
<ForeName>Mauricio</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morán</LastName>
<ForeName>Julio</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México .</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009420" MajorTopicYN="N">Nervous System</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">axonal growth</Keyword>
<Keyword MajorTopicYN="Y">metabolism</Keyword>
<Keyword MajorTopicYN="Y">neuronal differentiation</Keyword>
<Keyword MajorTopicYN="Y">oligodendrocyte differentiation</Keyword>
<Keyword MajorTopicYN="Y">redox signaling</Keyword>
<Keyword MajorTopicYN="Y">redoxins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28817955</ArticleId>
<ArticleId IdType="pii">10.1089/ars.2017.7284</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2017.7284</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Mexique</li>
</country>
</list>
<tree>
<country name="Mexique">
<noRegion>
<name sortKey="Olguin Albuerne, Mauricio" sort="Olguin Albuerne, Mauricio" uniqKey="Olguin Albuerne M" first="Mauricio" last="Olguín-Albuerne">Mauricio Olguín-Albuerne</name>
</noRegion>
<name sortKey="Moran, Julio" sort="Moran, Julio" uniqKey="Moran J" first="Julio" last="Morán">Julio Morán</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28817955
   |texte=   Redox Signaling Mechanisms in Nervous System Development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28817955" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020